
1
REVIEW OF BACKGROUND

MATERIALS

We shall briefly review index notation, the Gauss elimination method to solve a
system of linear equations, Jacobi's method for an eigenvalue problem, and varia-
tional methods. These comprise the minimum background required in order to
understand the materials given in this book. Readers with a good grasp of these
topics can skip this chapter and start with Chapter 2.

1.1 Index notation

The most covenient notation for the study of finite element methods is index nota-
tion, since equations written using it can be translated to FORTRAN statements
directly. For example, let us consider the dot product of two vectors,

N

u = Z uth = uih + U2h + ' ' ' + uNiN (1.1)

and

N

v = X vth = vih + v2i2 + * ' ' + vNiN (1.2)
; = l

Here the numbers {MJ are the components of the vector in the RN space. For
simplicity, let N = 3; we are then in the three-dimensional space that we use in
mechanics. In most cases, x-, y-, and z-coordinate axes are set up in the space R3,
and the unit vectors i, j , and k are introduced along each axis x, y, and z, respec-
tively (see Figure 1.1). In index notation, we change these as follows:

x y z i j k

i i I 1 i i
x l X2 X3 !1 l2 l3

Then the position vector r = xi + y\ + zk is written as r = xtii9 instead of r =
YJ= I Xi-i;. The rule involved here is that summation is taken over the index i, which
is repeated exactly once (i.e. appears exactly twice) in a term. If clarity is necessary
on the range of summation, we may write

r = x,i,, i = l , 2 , . . . , J V (1.3)

The unit vectors i1? i2, and i3 (i.e., i, j , and k) are called the base vectors for the U3

space, and the numbers xl9 x2, and x3 are components of the vector r with respect
to the base vectors il5 i2, and i3. Generalization to the UN space is straightforward.
Thus, the vectors u and v in (1.1) and (1.2) are represented by

u = Mii. v = vtii9 i = 1, 2 , . . . , N (1.4)
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k or i

j or

Figure 1.1 Coordinate system for U3.

and their dot product can be written as

( N

U'\ = UiVi( = X U
(1.5)

For the dot product of two vectors we have the FORTRAN statements

DOT = 0
DO 100 I = 1,N

100 DOT = DOT + U(I) * V(I)
(1.6)

The index in index notation directly becomes the one that indicates the entry of
the array in FORTRAN.

By the summation convention, we do not sum over i in the term aibich since
the index i is repeated three times; however, we take summation over; in aftdy A
remark on the summation convention is that the letter used for the repeated index
is immaterial in the sense that af{dj is exactly the same as the expression akctdk

since summation is taken over; in the first and over k in the second. Thus, repeated
indices are called dummy indices. The index i in the expression af{d^ above is called
a free index that takes any number from i = 1, 2 , . . . , N. A FORTRAN statement
for this is given as

SUM = 0
DO 100 J = 1,N

100 SUM = SUM + A(J) * D(J)
ACD(I) = SUM * C(I)

(1.7)

Similarly, let us introduce the basis for a matrix (or tensor) T defined in the space
UNUM as the set {i£ej}, i = 1, 2 , . . . , N, I = 1, 2 , . . . , M, where i ^ is the dyadic, or
outer product, and is best defined by the following two operations:

where the product indicated by o denotes ordinary, dot, or cross multiplication.
Using the components Tu of the tensor T with respect to i ^ , T is represented as

T = Tuifij (1.9)
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Figure 1.2 Rotation of the coordinate
"! system.

We sometimes describe the tensor T by the matrix form [Tl7] by arraying its
components Tl7, i = 1, 2 , . . . , N and / = 1, 2 , . . . , M. The operation of multiplying
a matrix and a vector can be given as

v = T • u or vt= TuUj (1-10)

where v = v^ e UN and u = UJCJ e MM. Note that a matrix transforms one vector
into another vector. One very typical example of a matrix is the coordinate rotation
matrix ft = /}/fejif (see Figure 1.2) defined by

Pn = cos(6y (1.11)

where 9n is the angle between the / axis and the i axis. Then the unit base vectors
e7 are related to the vectors {ij:

e, = jJ,A (1-12)

Using these, we can obtain the components of v in the rotated coordinate system
(xl9 x2, x3):

where

A v . e / = 8/.i.)

Here we have used the fact that

1 if i = j

0 if i #7

(1.13a)

(1.13b)

(1.14)

by using the Kronecker delta. Similarly, we can find the new components of a
matrix after a coordinate rotation has been performed. Indeed, for a given matrix

A = (1.15)
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we also have

A = Ajje^j (1.16a)

where

= PnAvftju (1.16b)

The transformation (1.16) is sometimes represented in matrix form as

A = PA/}T (1.17)

by using the transpose of the matrix. A translation of equation (1.17) to FORTRAN

is

DO 100 IT = 1,3
DO 100 JT = 1,3
ATIJ = 0
DO 102 I = 1,3
DO 102 J = 1,3

102 ATIJ = ATIJ + B(IT,I) * A(I,J) * B(JT,J)
100 AT(IT,JT) = ATIJ (1.18)

We shall now look at index notation for the gradient and divergence operators.
In the (x, y, z) coordinate system, the gradient of a scalar function </> is given by

If we introduce the notation cj>,- for the partial derivative with respect to xh that is,

<t>,i - j ~ (1-20)

then the gradient of (j> becomes

/ a \
(1.21)

The gradient of a vector v = i?fif is a tensor Vv represented by

Vv ̂  vjjii (1.22)

The divergence of a vector v = vxi + vy) + vzk is defined as

V v = divv = ^ + ^ + ^ (1.23)
dx dy dz
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Using index notation, we have

= £ i f ' l j = {Vli)Sii = "'•' (L24)

The divergence of a tensor T = T^i.j, is given by

T i • (\ 1 ^

("V^i*

= T^JI* (1-25)

In the usual notation, we have

V T = i5^ + ̂ ^ +
^ d +

dy dz
> ( d T x y , d T y y .

d ddx dy dz

dz

Using the gradient and divergence operators, the Laplacian is given as

A d d> d d> d (b

^ 2 ^ 2 " dz2

—\ (i —
''dxj ydxjj

= <t>Jrij = <l>.u (1-27)

More generally,

div(k grad <j>) = V • (k V(/>) = (fcy^,,),; (1.28)

Another useful convention using index notation can be obtained from the per-
mutation symbol

{ 1 if ij, k is an even permutation of 1, 2, 3
- 1 if ij, k is an odd permutation of 1, 2, 3 (1-29)

0 otherwise
More precisely, e112 = 0, e231 = 1, e321 = - 1 , e132 = - 1 , e133 = 0, e312 = 1, and
others. If we use this symbol, the cross product w = u x v of two vectors u and v
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can

if w

be written as

= wfli9 u = Ujij , and v = vkik,

w =

w; =

since

U X V

1 Review

z eiJkUjvk

=

1 J •*

ux uy uz

vx vy vz

of background materials

(1.30)

(1.31)

Exercise 1.1: Suppose that the range of all indices is from 1 to 3 in the
following.

1. Show that (a) 8 ^ = 3, (b) eijkekji = - 6, (c) ekki = 0, (d) 5{jdjk = 8ik9 and
(e) eijkAjAk = 0.

2. If b{ = ajyjafi^ show that b = fcfif is a unit vector.

3. Use index notation to prove that

a • (b x c) = (a x b) • c

4. Using the definition of a determinant, show that

/axl a12 a13\

det a21 a22 a23 = eijkaua2ja3k

\a31 d32 d33)

5. Show that (a) eijkeimn = Sjm5kn - 8jn8kn9 (b) eijkeijn = 2dkn, and
/ a n a12 a13\

(c) de t l a 2 1 a22 a23\=&ijkelmnauajmakn (1.32)

\^3^ ^32 ^33/

6. Develop a FORTRAN program to normalize the vector a = a^ whose
components are stored in the one-dimensional array A(I), I = 1 , . . . , N.

7. Suppose that a 3 x 3 matrix array A(I, J), /, J = 1, 2, 3, is given. De-
velop a FORTRAN program to compute its determinant.

1.2 Gauss elimination method for solving a system of linear equations

In the subsequent chapters, we shall solve the system of linear equations obtained
by finite element approximations of problems in mechanics. Roughly speaking, a
finite element method is a process by which a continuous problem in mechanics
is reduced to a discrete problem, whose solution leads to a system of linear
equations symbolically represented by

Ku = f or Kijuj=fi (1.33)

where K is the stiffness matrix, u the generalized displacement vector, and f the
generalized load vector. Thus, in order to obtain the generalized displacement u,
we have to solve the system of linear equation (1.33).

One of the methods used to solve (1.33) is the Gauss elimination method dis-
cussed below. Suppose that we are given the system of linear equations

dtjXj = bh i = l , . . . , N (1.34a)
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1.2 Gauss elimination method

that is,

013*3 + ' * '

021*1 + 022*2 + 023*3 + ' ' ' + 02N*2V = *>2

aNlXl + aN2X2 + 0^3*3 H~ " ' ' + aNNXN = ^N

If matrix notation is used, (1.34a) and (1.34b) are also expressed by the form

0 1 1 0 1 2 0 1 3 • * • 012V

0 2 1 0 2 2 0 2 3 * * ' 022V

02V1 02V2 02V3 " ' ' 0/V2V

* 1

* 2

* N .

> — < fe2

V

(1.34c)

A standard Gaussian elimination process is divided into two parts, the forward
elimination and the back substitution. We shall describe in detail the forward
elimination for the first two steps and shall generalize the forward elimination pro-
cess using index notation.

The first step is to eliminate the terms a2lx1, 031*1? • • • > 0;vi*i fr°m the system
of linear equations (1.34) as indicated below:

allx1
a1NxN = b1

a2l
a2\ i

« 3 1

a21
^22 <•

31 \
a12 \x

a,,

aNi fln

Denoting the coefficieni of the new equations by atj where

we have

011 = 012 = 012

0 2 1
022 ~~ 022 012? 023 ~~ 023 013

011 011

b2 = b2 — fe^etc.

0 n * i + 012*2 + 013*3 + * ' • + a1NxN = b1

022*2 + 023*3 + ' ' ' + a2NXN = B2

032*2 + 033*3 + ' " ' + 03iV*iV = ^3

dN2x2 + dN3x3 + • • • + dNNxN - bN
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8 1 Review of background materials

The second step is to eliminate the terms azlx2,
equation as follows:

a12x2+

d22x2 + d23x3

, • • ••> aN2x2 using the second

d2NxN = b2

Continuing the above two steps, we can generate the forward elimination proce-
dure for the feth step:

du = dtj - -^- dkj (no sum on k)
akk

b{ = bt — bk (no sum on k)

i = k+l,k + 2,...,N

(1.35)

(1.36)

for given k = 1, 2 , . . . , iV — 1. The above index expressions suggest a FORTRAN

program for the forward elimination by the Gauss method:

C
C
C

(FORWARD ELIMINATION)

Nl = N - 1
DO 100 K = 1,N1
Kl = K + 1
DO 102 L = K,N

102 C(L) = A(K,L)
AKK = l./C(K)
BK = B(K)
DO 108 I = K1,N
AIK = A(I,K) * AKK
B(I) = B(I) - AIK * BK
DO 108 J = K,N

108 A(I,J) = A(I,J) - AIK * C(J)

WRITE(6,600) K
600 FORMAT(///10X, 'STEP = ',13,/)

WRITE(6,602) ((A(I,J),J = 1,4),B(I),
602 FORMAT(4(E10.3,1X),5X,E10.3)
100 CONTINUE

(1.37)

These four steps of the program are prepared only for the purpose of checking if the program for the
forward elimination is working correctly.
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1.2 Gauss elimination method

A routine for the back substitution can be obtained by

&kkXk

that is,
/ JV \ /

Xk = [bk- Z "kjXj / "kk (no sum over k) (1.38)

This can be carried out by the program

C
C (BACK SUBSTITUTION)
C

K = N
B(K) = B(K)/A(K,K)

104 K = K - 1
IF(K.LE.O) RETURN
Kl = K + 1 (1.39)
SUM = 0.
DO 106 J = K1,N

106 SUM = SUM + A(K,J) * B(J)
B(K) = (B(K) - SUM)/A(K,K)
GOTO 104

We now present an example illustrating the above two routines.

0.200E + 01 0.300E + 01 -0.100E + 01 0.500E + 01
0.400E + 01 0.400E + 01 -0.300E + 01 0.300E + 01

-0.200E + 01 0.300E + 01 -0.100E + 01 0.100E + 01
-0.300E + 01 0.200E + 01 -0.100E + 01 0.500E + 01_

0.150E +
0.100E + 02 |

-0.500E + 01
-0.100E + 0L

Since the number of equations is 4, three steps are necessary in the forward elimina-
tion as shown in Table 1.1. Then the back substitution yields the solution

1
2
3
4

3.00000
1.00000
4.00000
2.00000

Exercise 1.2: It is inconvenient to transfer two-dimensional arrays,
such as the coefficient matrix A in the above example, from one sub-
routine to another. Modify the above programs so that the coefficient
matrix A is stored in a one-dimensional manner as

A = (all9 a12, a13,..., aln, a21, a22,..., a2n,..., anU an2,..., ann)

Exercise 1.3: If the property of symmetry atj = ajt is assumed in a sys-
tem of linear equations, it is possible to save storage space, that is,
the array for the coefficient matrix A. Modify the programs to accom-
plish this.
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10 1 Review of background materials

STEP = 1
0.200E + 01
0.0
0.0
0.0

STEP = 2
0.200E + 01
0.0
0.0
0.0

STEP = 3
0.200E + 01
0.0
0.0
0.0

0.300E -J
-0.200EH

0.600E -̂
0.650E -

0.300E -
-0 .200E-
-0 .0
-0 .0

0.300E -
-0 .200E-
-0 .0
-0 .0

h 01
h 01
1- 01
h 01

h 01
1-01

1-01
1-01

Table

-0.100E
-0.100E
-0.200E
-0.250E

-0.100E
-0.100E
-0.500E
-0.575E

-0.100E
-0.100E
-0.500E
-0.191E

1.1

+ 01
+ 01
+ 01
+ 01

+ 01
+ 01
+ 01
+ 01

+ 01
+ 01
+ 01
- 0 5

0.500E -J
-0 .700E-

0.600E ̂
0.125E -

0.500E -
-0 .700E-
-0 .150E-
-0.103E -

0.500E -
-0 .700E-
-0.150E -

0.700E -

1-01
h 01
h 01
hO2

h 01
f- 01
hO2
(-02

H 01
f- 01
H02
f- 01

0.150E -
-0.200E -

0.100E -
0.215E -

0.150E -
-0.200E -
-0 .500E-
-0 .435E-

0.150E -
-0 .200E-
-0 .500E-

0.140E -

hO2
hO2
hO2
1-02

hO2
}-02
hO2
(-02

i-02
(-02
K02
fO2

Exercise 1.4: If the coefficient matrix is banded - that is, if

fay i f | j - i | < M
fl^| M<n

we need not compute and store the zero elements. Modify the programs
in order to exploit this property.

Exercise 1.5: Develop a BASIC program that is equivalent to the
programs (1.37) and (1.39).

1.3 Jacobi's method for solving an eigenvalue problem

Another typical discrete form obtained by finite element approximations is the
eigenvalue problem

Ku = or (1.40)

where M is called the mass matrix in the area of finite element methods. In this
case, the problem is to find X and u satisfying (1.40). If the matrix is invertible,
then (1.40) becomes

M *Ku = Xu or Mik
iKkjuj = Xu{ (1.41)

If the matrix S = M XK is a symmetric N x N matrix (in most vibration problems
it is not!), there exist N pairs of solutions to the eigenvalue problem (1.41); that
is, there exist the solutions (Xu ux), (A2> u2) , . . . , (Xn, un) to (1.41). One method for
finding the solutions to (1.41), that is,

Su = Xw or SijUj = Xut (1.42)
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is the Jacobi method, which is based on the similarity transformation of a square
matrix.

Suppose that P is an orthogonal matrix such that det P = 1 and P " 1 = PT,
where PT is the transpose of the matrix P. Then the similarity transformation of
S by P is given by

S = PTSP or §l} = PkiSklP,j (1.43)

Suppose that I and u are an eigenvalue and the corresponding eigenvector of S,
that is, X and u satisfy the system (1.42). Premultiplying by PT yields

PTSu = APTu

Define

v - PTu, i.e., u = Pv (1.44)

Then we have

pTSPv = /v, i.e., Sv = /v (1.45)

This means that if (A, u) is a pair of eigenvalue and eigenvector of S, then (A, v) is
a pair of eigenvalue and eigenvector of S. The converse is also true. Therefore,
solving problem (1.42) is equivalent to solving problem (1.45).

The Jacobi method is based on the above similarity transformation of a matrix
and the idea that one of the off-diagonal terms of the new matrix can be forced
to be zero after applying the transformation (as will be seen below). For example,
if Sip i / ; , is the element of S whose magnitude is the largest among Skh k < /,
/ = 1, 2 , . . . , N, the Sij can be made zero by choosing properly the orthogonal
matrix P. Repeating this process until all off-diagonal terms become zero, we have

S*u* - 2u* (1.46)

where

S* = • • • PIPIPISP1P2P3

u * _ . . pTpTpTu A TTU U*/J

and Pj is the orthogonal matrix used at the ith process of forcing an off-diagonal
term to be zero. Since S* is supposed to be a diagonal matrix, its diagonal elements
are then the eigenvalues of S. Using (1.47), the corresponding eigenvectors are
obtained from

u = P!P2P3 u* = Tu* (1.48)

In general, there is no guarantee that the matrix S* will be obtained after a finite
number of applications of the similarity transformation. However, we shall assume
this is obtainable for the matrix S considered here.

Let us denote by P{ij) the orthogonal matrix that yields Stj = 0 by the simi-
larity transformation of the matrix S, where the indices i and j are defined so
that the absolute value of Stj is the largest among the off-diagonal terms Skl; k < /,
/ = 1, 2 , . . . , N. To do this, we seek the angle <p to be used in the orthogonal matrix
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12 1 Review of background materials

P{ij\ whose elements are given by

1

* COS 0

• — sin 0

sin 4>

COS 0

that is,

(y) = pf = cos 0, = -Pf = sin 0 (no sum)

Using this rotation matrix, the matrix \_Stj] becomes [Sfc*];

As a result of the rotation, we want

Hence, the angle </> is determined by 50- = 0.

Stj = §„ = i(S£l. - S^) sin cos 20 = 0

that is,

J i i ~?~ °jj5.. (no sum)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

Once the angle 0 has been determined, Skl in (1.51) is obtained as

skt = skh k, i # Uj

Sik = Ski = Sik cos <j) - Sjk sin 0, k # i,7

S^ = Ski/ = Slk sin 0 + 5,* cos </>, k ^ i,j (1.54)

S« = i(S« + SJJ) + i(S« - S7J) cos 20 - Sy sin 20

Sn = i(S« + S,7) + i(SK - Si;) cos 20 + Sy sin 20

(no sum)

Convergence of the iterations may be checked by the quantity |Sy|; that is, if

|Sy| < TOLE (1.55)

is satisfied for a given tolerance TOLE, the process of applying similarity trans-
formations will be terminated. Thus, after a certain number of applications of the
transformation, the matrix S is transformed to a diagonal matrix S* within errors
whose order of magnitude is less than the given tolerance.
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1.3 Jacobfs method for an eigenvalue problem 13

Let us now write a program of Jacobi's method to find the eigenvalues and eigen-
vectors for a given symmetric matrix. A flowchart for the program is shown in
Figure 1.3. The program shown below is written in the BASIC language of the system
of IBM PC-XT.

1000 PR I NT
1010 PRINT " JACOBI'S METHOD (S) "
1020 PR I NT "*******************************"
1030 PRINT : PRINT :PRINT
10̂ +0 INPUT "Size of the symmetric matrix NX = ";NX
1050 DIM S(NX,NX) ,T(NX,NX)
1060 PRINT : PRINT "SYMMETRIC MATRIX S " : PRINT
1070 FOR 1=1 TO NX : FOR J=l TO NX : PRINT " S(";I;",";J;") = ";: INPUT S(I,J) :

S(J,I)=S(I ,J) : NEXT J : NEXT I
1080 GOSUB 1100
1090 GOTO 1580
1100 REM Subroutine Jacobi's Method ( Standard Eigenvalue Problems )
1110 REM
1120 PRINT
1130 INPUT "Tolerance EP = ";EP
1140 PRINT :

PRINT "ITERATION PROCESS " : PRINT
1150 FOR 1 = 1 TO NX : FOR J=l TO NX : T(I,J)=O : T (J, I) =0 : NEXT J : T(l,l)=l : NEXT I
1160 N=0 : NP=1
1170 N=N+1
1180 REM < FIND THE MAXIMUM ABSOLUTE VALUE >
1190 SM=O
1200 FOR 1 = 1 TO NX-1 : FOR J=l + 1 TO NX : IF ABS (S (I,J))<SM THEN GOTO 1220
1210 SM=ABS(S(I,J)) : IM=I : JM=J
1220 NEXT J : NEXT I
1230 REM < FIND THE TWICE VALUE OF THE ANGLE >
1240 SI=S(IM,IM) : SJ=S(JM,JM) : SK=S(IM,JM)
1250 IF SI=SJ THEN GOTO 1280
1260 SL=-2*SK/(SI-SJ) : T2=ATN (SL)
1270 GOTO 1310
1280 IF SK>0 THEN T2=~3.141592654#/2
1290 IF SK=O THEN T2=0
1300 IF SK<0 THEN T2=3.l4l592654#/2
1310 T1=.5*T2
1320 C1=COS(T1) : Sl= SIN(Tl) : C2=C0S (T2) : S2=SIN(T2)
1330 REM < MODIFY THE MATRIX S >
1340 FOR K=l TO NX : SY=S(IM,K) : SZ=S(JM,K)
1350 S3=SY*C1-SZ*S1 : S(IM,K)=S3 : S(K,IM)=S3
1360 S4=SY*S1+SZ*C1 - S(JM,K)=S4 : S(K,JM)=S4
1370 NEXT K
1380 S(IM, IM)=.5*((SI+SJ) + (SI-SJ)*C2)-SK*S2
1 390 S (JM, JM) =.5* ((S I+SJ) - (S I -SJ) *C2) +SK*S2
1400 S(IM,JM)=O : S(JM,IM)=O
1410 REM < MODIFY T >
1420 FOR K=l TO NX : T3=T(K,IM) : T4=T(K,JM)
1430 T (K, IM) *T3*C 1 -Ti**S 1 : T (K, JM) =T3*S1+T4*C1
1440 NEXT K
1450 IF N<NP THEN GOTO 1480
1460 PRINT N;TAB(10);SM
1470 NP=NP+10
1480 IF SM>EP THEN GOTO 1170
1490 PRINT :

PRINT "RESULTS/EIGENVALUES & EIGENVECTORS " : PRINT
1500 PRINT "NUMBER OF ITERATION = ";N
1510 PRINT "TOLERANCE = ";SM
1520 PRINT :

INPUT "Which eigenvalue and eigenvector will be output? (1,....,NX) = ";l
1530 IF l<=0 OR I>NX THEN GOTO 1570
1540 PRINT : PRINT " EIGENVALUE = ";S(I,I) : PRINT : PRINT "EIGENVECTOR" : PRINT
1550 FOR J=l TO NX : PRINT J;TAB (10);T (J,I) : NEXT J
1560 GOTO 1520
1570 RETURN
1580 END
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14 1 Review of background materials

START

Set up the matrix S(I,J)

Define the tolerance TOLE

Find the pair {I,J} such that
I S(I,J) | is the maximum among the
terms in the upper triangular matrix

Compute the angle 0

Construct the rotation matrix P(I,J)

Figure 1.3 Flowchart of JACOBLBAS.

Exercise 1.6: Write a program of Jacobi's method to obtain eigenvalues
and eigenvectors by using the FORTRAN language.

1.4 Variational methods

We shall briefly review variational methods to solve an algebraic and a boundary
value problem. For simplicity, we first study the problem: Find a vector u = w,i,
satisfying a system of linear equations

Ku = f (i.e., Kijuj = fi) (1.56)

for a given vector f = fpt and a symmetric matrix K = Xl 7i^ such that

Kij = Kji, iJ=U2,...,N (1.57)
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1.4 Variational methods 15

Using the symmetry of K, it can be shown that if u is a minimizer of a functional

F(v) = i v K v - v f (1.58)

among all vectors v e R", that is, if u satisfies

F(v) > F(u), Vv e IT (1.59)

then u is also a solution of equation (1.56). Here \ eUn means "a vector v is an
element of an N-dimensional Euclidean space IR"," and V means "for every." A
functional is a special function whose range is a scalar field such as a real line U.
We now show that (1.59) yields (1.56). Taking v = u + ew in (1.59) for an arbitrary
vector w and a positive number s > 0, we have

F(u + ew) > F(u), Vw e Un

Expanding the left side using (1.58) yields

e{i(w • Ku + u • Kw) - w • f} + js2w • Kw > 0

Dividing by e > 0 and passing through the limit e -» 0, we have

i(w • Ku + u Kw) - w f > 0, Vw e Un

Using the symmetry of K, this implies

w (Ku - f) > 0, Vw e Un (1.60)

Since w is an arbitrary vector in IR", (1.60) has to be satisfied for the choice — w
instead of w. That is,

-w-(Ku-f)>0, Vwer (1.61)

Inequalities (1.60) and (1.61) yield

w (Ku - f) = 0, Vw e Un (1.62)

That is, u has to be a solution of (1.56):

Ku - f = 0

On the other hand, if an additional condition

w • Kw > 0, V w e r (1.63)

is imposed, the inverse relation to the above can be verified. Indeed, suppose that
u is a solution of (1.56). Then applying the relation

F(v) - F(u) - (v - u) • (Ku - f) + i(v - u) • K(v - u)

the nonnegativeness condition (1.63) of the matrix K yields inequality (1.59):

F(\) - F(u) > 0, Vv G Un

Therefore, under the condition

Ktj = Kjt and w Kw > 0, Vw G Un (1.64)
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16 1 Review of background materials

the following three are equivalent to each other:

(PI) Ku-f=0

(P2) w ( K u - f ) = 0, VweR" (1.65)

(P3) F(v) - F(u) > 0, Vv G Un

where F is the functional defined by (1.58). Very roughly speaking, (PI), (P2), and
(P3) correspond to the equilibrium equation, the principle of virtual work, and
the principle of minimum potential energy, respectively, in mechanics.

Let us extend the above to the boundary value problem:

- ^ k ^ = / in (0, 1), u(0) = g, k^(l) = h (1.66)

Since the differential equation is defined on an interval (0, 1), we can obtain a
functional F through integrating some quantity over the interval,

F(v) = h £ k (~J dx - £ fa dx - to(l) (1-67)

The manner of defining a functional F for a given boundary value problem (1.66)
is that the boundary value problem (1.66) is obtained as the Euler equation of the
functional F as follows. Suppose that u is a minimizer of F such that

u(0) = g, F(v)>F(u% Vvmthv{0) = g (1.68)

In other words, u is a minimizer of F among the functions defined on the interval
(0, 1) that satisfy the "essential" boundary condition v(0) = g at x = 0. Then, for
every w such that w(0) = 0, taking v = u ± sw in (1.68) yields

F(u ± ew) - F(u) > 0

which reduces to

^fW)dx

dx dx J J

Dividing by s > 0 and passing to the limit s -» 0, we have

for every w such that w(0) = 0. It it clear that (1.69) is exactly the same as the first
variation of the functional F by the variation du = w from the minimizer u*
Indeed, the first variation of F is

* The reader should note that for contact problems involving inequality constraints the current ap-
proach is applicable, whereas the traditional "See approach" is not.
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1.4 Variational methods 17

Now, the Euler equation follows from the application of integration by parts in
(1.69):

since w(0) = 0. Noting that w and w(l) are arbitrary, equation (1.70) yields

Since the boundary condition at x = 1 for the first derivative of the minimizer
u is obtained as a part of the Euler equation, this is called a "natural" boundary
condition. If the integrand of a functional F consists of the function v and its
derivatives up to mth order, applying integration by parts m times yields boundary
terms involving derivatives of m, . . . , (2m — l)th order. Then we can define natural
boundary conditions for such boundary terms derived from the process of inte-
gration by parts. On the other hand, if boundary conditions are written in terms
of derivatives of 0 , . . . , (m — l)th order, these are essential boundary conditions.

In the above, we have shown that the minimizer u of the minimization problem
(1.68) is also a solution of the boundary value problem (1.66). As for the discrete
system (1.56), it can be shown that a solution u of (1.66) is also a minimizer of
the functional F under the condition

/c>0in(0, 1) (1.72)

To see this, it suffices to note the following relation:

F(v) - F(u) = £ U^-^(v - u)-f(v - u)\ dxv - u)\

-h(v - u)(l) + ± £ kl^(v - u)J dx (1.73)

for every v and u. Therefore, including the intermediate step (1.69) of (1.68) and
(1.71), we have the equivalent relation among the following three forms:

(P2) P f k ̂ -^ - fw] dz - M l ) = 0, Vw with w(0) = 0
J° \ dx dx )

(P3) u(0) = g, F(v)>F(u% \/v with v(0) = g

We shall call (PI), (P2), and (P3) the local, weak, and variational forms, respectively.
In the above, the functional form F is chosen so that (1.66) can be obtained

as the Euler equation. However, for a given boundary value problem, it might
be difficult to find the corresponding functional for the variational formulation
(P3). To avoid this difficulty, the weak form (P2), an intermediate step of the
originally given boundary value problem and the variational form, could be a
basis for the variational method to solve (PI) instead of using (P3), since the form
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18 1 Review of background materials

(P2) is easily obtained from the local form (PI). Indeed, multiplying an arbitrary
function w to the differential equation of (1.66) and applying integration by parts
after integrating them over the domain (0, 1), we have

dx dx

and

f i fdudw \ [ du I1

[k — - fw)dx-\k—-w\ =0
Jo \ dx dx J I dx Jo

Assuming w(0) = 0 and using the boundary condition of (1.66) yields

which is nothing but the form (P2). The derivation of (P2) from (PI) is very
straightforward, as shown. Thus, if it is possible to use the weak form (P2) for
approximation methods to solve the original boundary value problem (PI), we
need not go further up to the variational form (P3), which requires the deduction
of a functional.

1.4.1 Approximation (direct methods)
Before discussing finite element methods, we shall briefly review approximation
methods based on (P2) and (P3) that are precursors to the finite element methods
developed during the 1960s.

Let the minimizer u of F be assumed to be a polynomial

u(x) = g + J ujxj, UJEU, j=l,...,N (1.74)

that satisfies the essential boundary condition at x = 0. Substitution of (1.74) into
the functional F yields

N N ji N / N

i Z E k J. .uiUj-fog- X blul-h(g+ £ «» (1.75)

where bt = j j / x l dx, f0 = \lfdx, and k is assumed to be a constant. If u is a
minimizer of F, we have to satisfy

A F ( w ) = 0, i = l JV (1.76)
CUi

that is,

I k , +
 tj_ 1 uj -bt-h = O, i = l , . . . , N

Defining

Kij = TTT—T a n d fi = bt + h (1.77)
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1.4 Variational methods 19

we have the system of linear equations

KijuJ = fi9 i = l , . . . , AT (1.78)

Solving (1.78) yields an approximation to the minimizer u of F. By taking N -• oo,
we may have a minimizer u. This procedure to obtain u is called the Ritz method.

(P2) can also be used to find an approximation of u. Suppose that

w(x) = £ w,oc£, w(0) = 0 (1.79)
i = i

Substitution of (1.74) and (1.79) yields
N N jj N N

I I ^ T — — T W,M, - X ft/Wf - X hWl = 0
i = 1 7 = 1 i + J — l i = i ; = i

for every w, that is, for every wf, / = 1 , . . . , N. Using (1.77), we have

wiKijuj=wifh Vw,, i = l , . . . , N (1.80)
that is,

Thus, the same system of linear equations as (1.78) is obtained from (P2). We shall
call this Galerkirfs method to find an approximation of a solution to (PI).

If the function w in (P2) is assumed to be

W ( X ) = 2 , W f S l I l l y

a similar system of linear equations to (1.78) can be obtained. In this case, since
different representations to u and w are assumed in (P2), we shall call this the
generalized Galerkin (or weighted residual) method.

Exercise 1.7: Solve (1.78) for N = 3, and f{x) = 1 + x + x2.

Exercise 1.8: Assume that
JV /,V \ JV

u(x) = g + Y, "i sin — x , w(x) = ^ wf sin — x
i=l V2 / *=1 V2

and apply the Ritz and Galerkin methods to solve (1.66).

Exercise 1.9: Find the (P2) and (P3) forms corresponding to the local
formulation.

(PI)

k—=-ko(u - g) + h at x = 0 and 1
dx

Exercise 1.10: Suppose that a functional F is defined as

F(v) = {bf{v, va\ . . . , v{m)) dx
Ja
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20 1 Review of background materials

where v(i) is the ith derivative of a function v defined on the interval
(0, 1). Assuming that the integrand / is infinitely many times differen-
tiable in its arguments, derive the Euler equation by taking the first
variation of F and by applying integration by parts m times. Note that
Taylor's expansion of the integrand / is given as follows:

f(u + Aw, w(1) + Au{1\ . . . , uim) + Au(m))

H — (u u(

du(m)

Exercise 1.11: Find the Euler equation for the functional

where [>]J = g{\) - 0(0).

1.4.2 Lagrange multiplier methods
In the above, the minimization problem has the constraint u = g on the boundary
point x = 0. This yields the condition w(0) = 0 for a variation w from the solution
u. Now, if a Lagrange multiplier p is introduced to release the constraint u = g
at x = 0, the original minimization problem can be reformulated as a saddle point
problem of a corresponding Lagrangian

L(v,q) = F(v)-qv(0)-g (1.81)

where q is an arbitrary admissible Lagrange multiplier. That is, we shall seek a saddle
point (u, p) such that

L(u9 q) < L{u, p) < L(v, p), V(i;, q) (1.82)

where v does not have any restriction. The first inequality of (1.82) yields the mini-
mization problem

qu(0)-g>pu(0)-g, Vq (1.83)

Taking q = p ± sr, E > 0, Vr, in (1.83) and dividing by 8, we have

rw(0) - 0 = 0, Vr, i.e., u = # at x = 0 (1.84)

On the other hand, the second inequality in (1.82) yields the minimization problem

F(v) - pv(0) > F(u) - pu(0) (1.85)

Taking v = u ± sw, s > 0 in (1.85), that is, taking the first variation, we have

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511569630.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511569630.002


1.4 Variational methods 21

Applying integration by parts, we have Euler's equation

1 du f du
-k— = p a t x = 0, fc— = Oatx = 1

dx dx

Thus, the Lagrange multiplier p is the heat flux at the boundary x = 0.
If an inequality constraint w — u < 0 is assumed in (0, 1) for a given function

u such that g < u at x = 0, the Lagrange multiplier p has to be restricted by p < 0
and the Lagrangian is defined by

L(v,q) = F(v)-fcq(v-u)dx9 Vq < 0

Note that y and w are free from the constraint v — u < 0 and u — u < 0. Thus, there
are no restrictions on the variation with respect to w, although the Lagrange
multiplier is restricted by p < 0. The first inequality of (1.82) yields

£(q-p)(u-u)dx>09 q<0

that is,

p < 0, u - u < 0 p(w - u) = 0 in (0, 1) (1.87)

The second inequality of (1.82) implies

The local form of this integral identity can be obtained as

- ^ f i n ( ( U ) (1.88)

u = g a t x = 0, k-— = 0 a t x = l
dx

It follows from (1.87) that p = 0 if u < u and p needs not be zero if u = u. That is, if
the solution reaches to the upper bound u at a point x, the Lagrange multiplier
p becomes active. If the strict inequality u < u is satisfied, /? is nonactive.

Exercise 1.12: Let us consider a minimization problem for a functional

If a new function M is defined by

M = EI—^ (1.89)

the original functional F(w) is written as
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and the minimization problem becomes a problem with respect to two
variables w and M under a subsidiary condition (1.89). If a Lagrange
multiplier p is introduced to make an unconstrained problem, a cor-
responding Lagrangian becomes

L(w, M, p) = F(w, M) - j ; P ( f - 5 ) dx

Assuming the boundary condition on the Lagrange multiplier p such
that

p(0) = p{\) = 0

integration by parts on the last term of the Lagrangian yields

*.„-ft* *,-£(,£+££
Obtain similar expressions to (1.84) and (1.86) for the Lagrangian

L(w, M, p) starting from a saddle point problem similar to (1.82):

L(w, M, q) < L(w, M, p) < L(v, N, p), V(i;, N, q)

Using the relation p = M, which represents one of three equations
obtained by the saddle point problem, rewrite the other two equations
in terms of w and M.

1.4.3 Penalty methods
There are other ways to derive an unconstrained minimization problem to a con-
strained problem, which is subject to subsidiary conditions such as essential
boundary conditions. The exterior penalty method is such a method. We shall
briefly explain this using the minimization problem (1.68), which is constrained
by the boundary condition v(0) = g.

The first step is to introduce a penalty functional P(v) such that:

i. P(v) = 0 if and only if subsidiary conditions are exactly satisfied;
ii. P(v) > 0 and P is a continuous convex functional.

If a functional P satisfies inequality P((l - 6)u + Ov) < (1 - 0)P(u) + 0P(v) for
every 6 e [0, 1], P is said to be convex. Now, if the condition v(0) = g is con-
cerned, a functional defined by

(1.90)

is clearly a penalty functional.
The second step is to define an unconstrained minimization problem to find

uE such that

Fe(ue)<FM Vi> (1.91)

where

P() (1.92)
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for a sufficiently small positive number e. The weak form derived from (1.91) is

(k 1^ ^ " / w ) d* ~ W(1) + 7 [ w ( 0 ) " ^]w(0) = °> Vw (L93)

This then yields Euler's equation

4 (»£)-"•<*•>
kd~W = h, k^(O) = ±[uJLO)-g] (1.94)

Since the heat flux at the boundary is finite, it can be expected by the third equation
in (1.94) that

Me(0) -g = 8(k^(0) j -> 0 as s -> 0

That is, ue(0) — g = O(e). If a constant s is sufficiently small, the boundary condition
u(0) = g is approximately satisfied in the unconstrained minimization problem
(1.91). A formal proof for the above consequence is as follows:

FE(uE) = min Fe(v) < min Fs(v) = F(u) (1.95)
v v,v(Q) = g

that is,

P(ue) < e[F(u) - F(uj]

Since F(u) and F(uE) are finite values for any e, the right side goes to zero as s -• 0.
Because of P(v) > 0, we have

lim P(uE) = 0

If a sequence {uE} converges to a function u, then P(u) = 0; that is, u(0) = g, since
P is assumed to be continuous. The remaining question is to show that u = u, that
is, that u is a minimizer of the original problem. Noting that P(v) > 0 and e > 0,
(1.95) yields

F(ue) < F(u)

Since uE is assumed to converge to w, we have F(u) < F(u); that is, u is also a
minimizer of a functional F under the condition u(0) = g.

The last remark is a relation between the Lagrange multiplier and penalty
methods. If

pE - - - [ue(0) - g\ (1.96)

is defined, the weak form (1.93) suggests that pE is an approximation of the
Lagrange multiplier. Indeed, if pE converges to a function p as e —• 0, it can be
shown that p is the Lagrange multiplier to the constraint u(0) — g = 0.
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Exercise 1.13: For a functional

^ ) 2 ] x - J > rfx
Let us consider that the relation

is a subsidiary condition. Then the original functional becomes

Applying the penalty method for a penalty functional

derive the weak form and Euler's equation.
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